An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems

The inverse eigenvalue problem of constructing symmetric positive semidefinite matrixD written as D ≥ 0 and real-valued skew-symmetric matrix G i.e., G −G of order n for the quadratic pencilQ λ : λMa λ D G Ka, whereMa > 0,Ka ≥ 0 are given analytical mass and stiffness matrices, so that Q λ has a prescribed subset of eigenvalues and eigenvectors, is considered. Necessary and sufficient condition...

متن کامل

An Inverse Quadratic Eigenvalue Problem for Damped Structural Systems

We first give the representation of the general solution of the following inverse quadratic eigenvalue problem IQEP : given Λ diag{λ1, . . . , λp} ∈ Cp×p , X x1, . . . , xp ∈ Cn×p, and both Λ and X are closed under complex conjugation in the sense that λ2j λ2j−1 ∈ C, x2j x2j−1 ∈ C for j 1, . . . , l, and λk ∈ R, xk ∈ R for k 2l 1, . . . , p, find real-valued symmetric 2r 1 -diagonal matrices M,...

متن کامل

An iterative updating method for damped gyroscopic systems

The problem of updating damped gyroscopic systems using measured modal data can be mathematically formulated as following two problems. Problem I: Given Ma ∈ Rn×n,Λ = diag{λ1, · · · , λp} ∈ Cp×p, X = [x1, · · · , xp] ∈ Cn×p, where p < n and both Λ and X are closed under complex conjugation in the sense that λ2j = λ̄2j−1 ∈ C, x2j = x̄2j−1 ∈ C for j = 1, · · · , l, and λk ∈ R, xk ∈ R for k = 2l+1, ...

متن کامل

The second-order cone eigenvalue complementarity problem

The Eigenvalue Complementarity Problem (EiCP) differs from the traditional eigenvalue problem in that the primal and dual variables belong to a closed and convex cone K and its dual, respectively, and satisfy a complementarity condition. In this paper we investigate the solution of the SecondOrder Cone EiCP (SOCEiCP) where K is the Lorentz cone. We first show that the SOCEiCP reduces to a speci...

متن کامل

On an Inverse Eigenvalue Problem for Unitary

We show that a unitary upper Hessenberg matrix with positive subdiago-nal elements is uniquely determined by its eigenvalues and the eigenvalues of a modiied principal submatrix. This provides an analog of a well-known result for Jacobi matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2009

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2009/725616